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Supplementary Section SI1 | Biophotonic nanostructures on C. faunus butterfly wings 

Numerous living organisms possess fascinating structural coloration. However, transparency in 

insects is rare to observe among terrestrial life due to significant surface reflections between living 

tissues and air1,2. In this context, the longtail glasswing C. faunus butterfly is an interesting example 

given it possesses the structural basis to support both reflection-based coloration and transmission-

based transparency. The transparency of the postdiscal area can be well-explained by effective 

medium theory and a transfer matrix model similar to other anti-reflective subwavelength 

nanostructures found in nature considering low absorption of chitin2,3. The subwavelength nanodome-

shaped structures of the postdiscal area induces a refractive index with a linear gradient from 1 for air 

to 1.56 for the chitin membrane, and effectively reduces surface reflection2,3. Nanodome-shaped 

structures of the postdiscal area are hexagonally arranged and hence, a hexagonal unit cell was 

considered with an area of Ahex = √3/2d2 where d is the center-to-center distance between adjacent 

nanodomes. The radius of the nanodome at height z was provided by r(z) = r0 √(1 –  z/ℎ), where h is 

the height of the nanodomes, and r0 is the base radius that is equal to d/2. Consequently, the postdiscal 

nanodome area at height z is given by ATP(z) = πr0
2(1 – z/h), and the volume fraction of chitin as a 

function of actual height is given by: 

𝑓𝑇𝑃 =

1                         for 𝑧 < 0
𝜋

2√3
(1 −

𝑧

ℎ
)            for 0 ≤ 𝑧 ≤ ℎ

0                         for z > ℎ

                                              (1) 

The base of the nanodomes was defined to include the origin of the z-axis at its centre. The remaining 

fraction of air is given by fair = 1 - fTP. After determining the volume fraction, the effective refractive 

index was calculated for any z using the well-known Maxwell-Garnett model. Then, the optical 

admittance and the corresponding reflection (R) and transmission (T) spectra of the stacked thin layers 

were calculated using a characteristic matrix method3.  

The nanostructures of the basal area, however, utilize a different physics to remain optically 

transparent in the visible spectrum. The transparency occurs due to non-resonant forward Mie 

scattering from low index  chitin (n = 1.56)4 nanostructures that can be calculated by rigorously 

solving the Maxwell’s equations5,6 (See Fig. 2f). Finite-difference time-domain (FDTD) simulations 

were performed using a commercial FDTD software (Lumerical Solutions Inc.) to numerically 

calculate the reflection (R) and transmission (T) of the basal area. 

In order to compare the simulated transmission spectra of postdiscal and basal areas with 

experimental spectra, the membrane absorption and light reflections from its backside were 

considered assuming the wing membrane was surrounded by nanostructures on both sides. 

Considering the thickness of the wing membrane l (500 nm) and absorption coefficient α (α = 4πκ/λ 
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where κ = 0.008 ± 0.001, the extinction coefficient considered here for the chitin), the final 

transmittance (TF) can be calculated by2: 

𝑇𝐹 =  
𝑇2𝑒−𝛼𝑙

1−𝑅2𝑒−2𝛼𝑙 
.                                                             (2) 

The simulated transmission spectra of both postdiscal and basal areas were plotted in Supplementary 

Fig. S2 along with the experimental outcomes, showing good agreement. 

The angle-independent scattering properties of the basal area as found in Fig. 2j are directly correlated 

to the isotropic spatial frequency of the short-range-ordered nanostructures. For example, if we 

consider light with an incident wave vector ki being scattered to a wave vector ks, the difference 

between ki and ks can be provided by the spatial frequency kb of the structure, i.e. ks−ki = kb
7. Due to 

the isotropic nature of the spatial frequency kb (see the FFT diagram in Fig. 2D in the main 

manuscript), the ks−ki will remain the same irrespective of the incident angle, thereby improving the 

angle-independent scattering properties. 

To elucidate the biological significance of the dual nano-structural basis for transparency of the C. 

faunus wing, we illuminated the wings under ultraviolet (UV) light and captured images using a 

camera (Supplementary Fig. S3). No UV signature in the postdiscal areas was observed, whereas the 

basal areas showed violet-coloured reflectance under UV illumination (Supplementary Fig. S3). The 

short-range-ordered nanostructures with subwavelength periods in the postdiscal areas exhibited 

minimal scattering and high transparency in the UV-VIS light. However, similar nanostructures in the 

basal areas with larger inter-structural spacing comparable to the light wavelength generated 

backscattering in the UV range. The short-range order of the nanostructures in the spatial arrangement 

introduces a phase correlation in the backscattered light, leading to a coherent reflection peak in the 

UV regime as shown in Supplementary Fig. S4A. The characteristic length scale of the nanostructures 

generates such strong backward scattering of light within a narrow frequency range8. In general, for 

any wave vector of k > kb/2, short-range structural order introduces a phase correlation of light 

scattered by adjacent particles9. kb ranges between 0.021 nm-1 and 0.032 nm-1 in our 2D FFT 

calculation of the basal area and hence kb/2 corresponds to the frequencies in the blue spectrum. 

Therefore, coherent backscattered peak should appear in the frequencies higher than the blue 

spectrum, i. e. in the UV regime, which agrees with our experimental outcome.  

Butterflies are known to use the UV regime as a key spectral range for mating signals11–13, and the 

nanostructures with larger spacing in the basal area may play an important role in this regard. The UV 

signature with a peak at a wavelength of 345 nm is confirmed by the optical spectra shown in 

Supplementary Fig. S4A of the basal area. The total reflection of postdiscal area is remarkably low 

over the whole UV-VIS regime. In order to confirm that the UV reflection of the basal area is 

structure-based, we removed the structural effect by soaking the wing in bromoform (n = 1.57) to 

match the refractive index of the inter-structural space to that of the nanostructures.  After soaking, we 
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repeated the reflection measurement and observed no reflection from the basal region confirming the 

structural origin of the reflection property (Supplementary Fig. S4B).  

Therefore, the short-range-ordered nanostructures on the C. faunus wings produce dual optical 

functionality – transparency in the visible range and reflectance in the UV regime - that assists in 

camouflaging1,14 and mating11–13 while keeping the wings sterile by resisting microbial growth (Figs. 

S5 and S6). 

Supplementary Section SI2 | Aspect-ratio optimization of the nanostructured on the Si3N4 

surface 

As mentioned in the manuscript, an antifouling approach relying on physical lysis may damage 

tissues and cells that come in contact with the implant, which may not be suitable for some medical 

uses. The aspect-ratio of the nanostructures was kept below 1 to rely on the hydrophilicity of the 

nanostructured Si3N4 surfaces to promote antifouling through anti-adhesion instead of through 

physical lysis. A literature survey on this phenomenon is summarized in Table S1, revealing the 

aspect-ratio of 1 or greater will cause physically induced lysis on both naturally occurring and 

synthetic nanostructured surfaces.  

With this background in mind, the nanostructure topography was optimized to an average aspect-ratio 

of 0.45 and a flat disk-shaped top. This aspect-ratio was chosen because there was no significant 

statistical difference in the anti-adhesion properties between nanostructured Si3N4 surfaces with an 

aspect-ratio of 0.45 and those with an aspect-ratio ranging from 0.45 to 0.9 (Supplementary Fig. S7, 

S11 and S16).  

Furthermore, optical simulations indicate that increasing the aspect-ratio broadens the resonance peak 

of the nanostructured Si3N4 (Supplementary Fig. S10). The flat Si3N4-membrane produces a ballistic 

(specular) transmission peak due to the phase delay introduced by the thin membrane that causes light 

interference. The integration of nanostructures on the Si3N4-membrane broadens the total 

transmission-peak profile due to the combination of ballistic (due to the thin membrane) and scattered 

transmission (due to the nanostructures)15.  

Supplementary Section SI3 | Anti-biofouling properties of the nanostructured Si3N4 surface 

We describe in this section our findings on the improved biocompatibility of the nanostructures: the 

nanostructures resist protein adhesion as well as prokaryotic and mammalian eukaryotic biofouling 

due to the surface hydrophilicity and nanostructured topology. To reach our conclusion, we have 

performed extensive literature study on the mechanisms behind the adhesion of plasma proteins, 

prokaryotes, and eukaryotes on the surface of implanted biomaterials; and also carried out a 

comprehensive set of experimental measurements and theoretical analysis performed on the 

nanostructured surfaces. 
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The adsorption behaviour of a protein onto a surface is a complex process, which is influenced by the 

nature of the protein as well as the properties of the surface, and it may involve several steps such as 

protein association-disassociation, change in conformation, denaturation, and charge interaction 

between neighbouring proteins16–18. As a result, there is a huge variation among underlying anti-

biofouling mechanisms and resulting outcomes of surfaces that have been proposed to control 

biofouling19–21. In the case of the nanostructured Si3N4 surface presented in this manuscript, our 

results indicate that the high degree of wettability (or hydrophilicity) acts in concert with the 

nanostructured surface topology to produce improved biocompatibility. We discuss this behaviour of 

the substrate by considering energy barriers in the following paragraphs.  

Let us consider attachment of a protein to a surface first. The reaction can be represented as:  

PL + SL ↔   PS                                                                         (3) 

Where, protein molecules in an aqueous media or liquid (PL) are interacting with a surface submerged 

in liquid (SL) and leading to adsorption of protein molecules on the surface represented as PS. The 

effective free energy change for this reaction can be represented as ΔGPS, which is dependent on the 

interfacial free energies of protein-liquid (γPL), protein-surface (γPS), and surface-liquid (γSL)22. This 

can be shown as23: 

ΔGPS = γPS - (γPL + γSL)                                                                   (4) 

For improved biocompatibility and reduced adsorption, the net energy change for the process should 

be positive, i.e. ΔGPS > 0, and a higher value of ΔGPS would imply an unstable protein-surface 

interaction or a higher resistance to biofouling due to easy detachment. The interfacial free energies 

are dependent on the interactions between (1) the substrate surface and the liquid media (governed by 

the wettability of the surface); (2) the protein molecules and the liquid media (governed by the 

structure and distribution of hydrophobic/hydrophilic residues on the proteins); and (3) the protein 

molecules and the surface (dependent on both of the above factors). Normally proteins hide their 

hydrophobic residues away from water while their charged, polar amino-acid side-chains are exposed 

to water24,25. As a result, charges on the proteins will also influence protein-protein interactions, which 

can lead to an aggregation of proteins in solution.  

Noticeably hydrophilic surfaces such as nanostructures improve the affiliation between the surface 

and water molecules by lowering γSL, which is favourable for improved biocompatibility. If the 

protein has a higher degree of hydrophobic residues or behaviour, γPS will be higher, which is 

favourable, but γPL will also be higher, which is unfavourable. Decrease in hydrophobicity of the 

protein will result in both lowering the γPS (unfavourable) and γPL(favourable). Changes in protein 

conformation during the surface adsorption process can also occur16,17, changing the interfacial free 

energy (γPS).  
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The surface-energy analysis indicates that in the case of the nanostructured Si3N4 surface, the 

increased hydrophilicity of the substrate also increases the energy barrier for protein adsorption on the 

surface. That is to say, there is a larger energy barrier to the replacement of water molecules in contact 

with the nanostructured Si3N4 surface (measured contact angle: 17º) with proteins as compared to a 

mildly hydrophilic surface such as flat Si3N4 (measured contact angle: 38º). However, it is important 

to keep in mind that the degree of resistance to protein adsorption also depends on factors such as the 

structure, sequence, and nature of resultant charges on the protein molecules.  

Previously, hydrophilic surfaces, which effectively bind water molecules and prevent protein 

adsorption, have been utilized for improved biocompatibility previously such as immobilized PEG-

based films26,27 and self-assembled monolayers (SAMs)28,29. However, the protein resistance of these 

surfaces decay over time due to factors such as auto-oxidation resulting in the formation of more non-

polar and less hydrophilic functional groups such as aldehydes and ethers30. Additionally, these 

surfaces are susceptible to physical defects and therefore are not suitable for long-term usage31,32. The 

noticeable hydrophilicity of the nanostructured Si3N4 surface results from the physical topology of the 

surface and is expected to show much better long-term reliability than chemical coatings.  

To isolate the contribution from the improved hydrophilicity to the deterrence of protein adhesion, we 

plasma-treated flat Si3N4 surfaces (Supplementary Fig. S17A) and compared them with non-treated 

flat Si3N4 surfaces. Decrease in protein adsorption as a function of increasing surface wettability 

becomes evident when comparing the results obtained for plasma treated and non-plasma treated 

substrates, as shown in Supplementary Fig. S17B. After 2 hours of incubation, the extent of protein 

adhesion on the plasma-treated Si3N4 and nanostructured Si3N4 surfaces are almost the same. This 

could be attributed to the dominance of the antifouling contribution from the hydrophilicity as the 

length-scale of the nanotopology of the nanostructured Si3N4 surface is over an order of magnitude 

greater than the size of proteins, implying that the nanoscale geometry effect is possibly negligible. 

However, after 24 hours, the nanostructured Si3N4 surface displays the lowest contact angle and the 

greatest resistance to protein adsorption while the nonpermanent plasma-treated surface loses its 

hydrophilicity and its contact angle returns back to a value close to that of a non-treated flat Si3N4 

surface (Supplementary Fig. S17A). 

When considering the case of cellular adhesion to surfaces, we can consider the following reaction: 

CL + SL ↔ CS                                                                    (5) 

Where, cells in an aqueous media or liquid (CL) are interacting with a surface submerged in liquid 

(SL) and leading to adsorption of cellular molecules on the surface represented as CS. The free energy 

change can be expressed as: 

ΔGCS = γCS - (γCL + γSL)                                                              (6) 
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The effect of surface wettability on the free energies in this case is also very similar with proteins. 

Improved hydrophilicity of the surface implies that γSL will be lower, which increases the barrier for 

displacement of water molecules on the surface by cells and is favourable for improving 

biocompatibility. The degree of improvement will once again be dependent on the other two terms 

(γCS and γCL), which are dependent on the nature of charges on the cells and their apparent 

hydrophilicity or hydrophobicity (discussed in further detail by Liu et al.)23. Indeed, it has been shown 

that increase in surface hydrophobicity (contact angle change from 15º to 100º) correlated directly 

with increase in surface adsorption of bacteria, algal spores, and eukaryotic cells 33–36. Our results 

(Supplementary Fig. S17C-D) show that there is a significant decrease in cellular adhesion upon 

increasing the hydrophilicity of flat silicon nitride surfaces through plasma oxidation, which agrees 

with the surface wettability model. 

The second important contribution towards improved biocompatibility for the nanostructured Si3N4 

surface originates from the nanostructured surface topology. Being in the same length-scale or more 

typically an order of magnitude smaller than cells, nanotopology plays a greater role in biofouling 

resistance against bacteria and mammalian cells (Supplementary Fig. S17C-D). Various reports have 

claimed that structured surfaces reduce biofouling as compared to flat substrates21,33,34. Two primary 

cases can be considered when cells are interacting with patterned substrates. The first case is when 

cells can elongate to increase their interaction with the surface and fill the gaps between 

nanostructures37. This cellular elongation directly leads to an increase in surface tension along the cell 

membrane and has been modelled by Pogodin et al. assuming a planar piece of membrane38. The 

increase in interfacial surface energy is described by38, 

∆𝛾𝐶𝑆 =  ∫
𝜀𝜂0𝑑𝜎

(1 + 𝛼(𝑟))
                                                                 (7) 

where η0 represents the surface density of adsorption sites on the membrane; ε represents energy 

gained per unit of adsorption site; α(r) represents the local degree of cell membrane stretching at point 

r; and dσ is the elemental surface area. The integration is performed over the total contact area 

between the cell membrane and the nanostructured surface. For high-aspect-ratio structures such as 

the nanopillars (diameter 160 nm, height 200 nm) described by Pogodin et al38, stretching of the 

membrane can eventually lead to rupture and cell lysis. For low-aspect-ratio nanostructures structures 

with an average diameter of 345 nm and height of 150 nm, our experimental results have not shown 

any signs of cell lysis (Supplementary Fig. S14-16), indicating that while membrane elongation is 

likely increasing γCS in equation 6 and improving biocompatibility of the substrate, cell membranes 

are not rupturing. 

The second possible case occurs when the cell membrane does not elongate to fill the gaps in the 

nanopatterned substrate. It has been shown that this situation leads to a reduction in adhesion points 

between the substrate and cells39, leading to poor adhesion of cells on patterned surfaces as compared 
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to a flat surface and consequently easier detachment. Therefore, nanotopology-driven outcomes such 

as membrane deformation or reduction in adhesion points contribute towards destabilizing the 

interaction between the cell membrane and substrate, improving resistance to cellular adsorption. Our 

results demonstrate that nanostructured Si3N4 surface shows a drastic decrease in both prokaryotic and 

mammalian cellular adhesion as compared to a flat substrate (with or without plasma treatment) due 

to the increased contribution from the nanotopology (Supplementary Fig. S17C-D). This is evident 

from the fact that greater cell adhesion resistance is offered by the nanostructured Si3N4 surface over 

the plasma-treated Si3N4 surface of a similar contact angle.  

To summarize, based on evidences found in literatures and results obtained from our experiments, we 

have analysed the underlying mechanism that produced the much improved biocompatibility of the 

nanostructured substrate: it is the combination of (a) much-improved, nanopattern-based, 

hydrophilicity that increases the energy barrier for protein and cellular adhesion on the substrate; and 

(b) nanostructured surface topology, which reduces the energy barrier for detachment of cells from 

the surface and destabilizes cellular adhesion to the substrate.   
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Supplementary Figures and Tables 

 

Supplementary Table S1 | Summary of the literature survey on biophysical properties of 

synthetic and naturally occurring nanopillars. Butterfly species and materials discussed or utilised 

in this work are highlighted and marked as * in the comments section. 
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Supplementary Figure S1 | Nanostructures in the basal area of the C. faunus wing. 3D atomic 

force microscopy (AFM) image of the nanostructures found on the C. faunus wing. 

 

 

 
Supplementary Figure S2 | Comparisons of simulated and experimentally measured total 

transmittance spectra of the postdiscal and basal areas. Simulation results (see details in the 

supplementary section SI1) are in accord with the experimental outcomes, confirming the discussed 

physics for the transparency observed in the C. faunus butterfly wings.  

 

Supplementary Figure S3 | C. faunus under visible and UV light. Photos of a C. faunus butterfly 

under visible and UV light. The red and blue arrows indicate the postdiscal and basal areas, 
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respectively.  Scale bar: 1 cm. 
 
   

 

Supplementary Figure S4 | Reflection spectra of postdiscal and basal transparent areas of C. 

faunus wing. a, The UV signature of the basal area is clearly visible while the reflection from the 

postdiscal area is negligible confirming the violet-coloured reflectance under UV illumination of the 

basal area as seen in Fig. 2a of the manuscript. b, The UV-VIS reflection spectra were obtained when 

soaking the wing in an index-matching liquid (bromoform, n = 1.57) to cancel out the structural 

contribution. In this case, no reflectance was observed under UV illumination from the basal area 

confirming the structural origin of this unique UV signature.  
 

Supplementary Figure S5 | Biophysical interaction between HeLa cells and the nanostructures 

on the C. faunus wing. The nanostructures have an aspect-ratio of approximately 1. Cell densities 

decreased with increased incubation time, indicating disruption of cellular growth (n = 5 

representative images). The experiment was conducted once. Error bars are given by the 

standard deviation about the mean. 

 



15 

 

  

Supplementary Figure S6 | Biophysical interaction between E. coli and the nanostructures on 

the C. faunus wing. Several (n = 20) high-resolution SEM images of E. coli on the nanostructures 

were observed. a, Close to 85% of the observed fields-of-view contained bacteria with significantly 

altered morphology indicating that the nanostructures disrupt bacterial shape and integrity possibly 

through localized stretching and stresses much like in high aspect ratio nanostructures reported in 

literature. b, The remaining 15% of the observed fields-of-view contained larger bacteria that 

maintained their shape despite marginal stretching clearly observed on their periphery. Scale 1 µm. 
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Supplementary Figure S7 | Structural variation of the nanostructured Si3N4. 3D atomic 

force microscopic images of nanostructured Si3N4 templates with aspect-ratios ranging from 0.15 

to 0.90. The aspect-ratio chosen for the nanostructured Si3N4-membrane and sensor is 

highlighted in red.  
 

 

 
 

Supplementary Figure S8 | Contact angle variation of the nanostructured Si3N4. The 

wetting properties of nanostructured Si3N4 templates with aspect-ratios ranging from 0.15 to 0.90 

(n = 4 measurements). Unmodified flat Si3N4 (aspect-ratio = 0) is moderately hydrophilic. 

Through structuring, the hydrophobicity of nanostructured Si3N4 increased. The aspect-ratio 

chosen for the nanostructured Si3N4-membrane and sensor is highlighted in red. The experiment 

was conducted once. Error bars are given by the standard deviation about the mean. 
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Supplementary Figure S9 | Simulated transmission profile of the flat and nanostructured 

Si3N4 membranes. The simulated transmission profile of the a, flat and b, nanostructured Si3N4 

membranes are in good agreement with experimental transmittance measurements shown in Fig. 3. 

The nanostructured Si3N4-membrane shows significant reduction in the angle dependence. 

 

 

Supplementary Figure S10 | Scattering effects of nanostructures on Si3N4-membrane. By 

gradually increasing the aspect ratio (height) of the nanostructures from 0 (i.e. flat membrane) to 

0.45 in a FEM simulator using the exact geometry of the fabricated samples, a gradual increase 

in the total transmission is observed.  
 

Increasing degree of scattering 

Flat Nanostructured 

0.15 0.30 0.45 
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Supplementary Figure S11 | Protein resistance of the nanostructured Si3N4 templates. The 

resistance against the adhesion of albumin and streptavidin was measured through intensity-based 

fluorescence microscopy (n = 12 representative images). Nanostructured Si3N4 templates with 

different aspect-ratios (0 – 0.90) were studied. In both cases, a sharp decline in protein adhesion was 

observed upon structuring the Si3N4 (aspect-ratio ≥ 0.15). The protein adhesion on the flat Si3N4 

(aspect-ratio = 0) was comparable to that of the positive control. The aspect-ratio of 0.45 chosen for 

use with an IOP-sensing implant is highlighted in red. The experiment was conducted once. Error 

bars are given by the standard deviation about the mean. 
 

 

 

 
Supplementary Figure S12 | Bacterial resistance of the nanostructured Si3N4 surface. 

Fluorescent micrographs of positive control, flat Si3N4, and nanostructured Si3N4 surfaces incubated 

for 4 hours in E. coli cultures transformed with green fluorescent protein (GFP)-expressing 

pFluoroGreenTM plasmid. Minimal bacterial adhesion is observed on the nanostructured Si3N4 

surface compared to the flat Si3N4 and control surfaces. Scale bars, 100 µm. 
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Supplementary Figure S13 | Bacterial adhesion as a function of fluorescence intensity. The 

average E. coli fluorescence intensity observed on the nanostructured Si3N4 surface was 

considerably lower than the flat Si3N4 surface (***P ≤ 0.001, one-way ANOVA with post-hoc 

Tukey test, s.d., n = 5 representative images). Adjustments were made for multiple 

comparisons. The experiment was replicated two times. Error bars are given by the 

standard deviation about the mean.  

 
 

 

 

 

 

 

Supplementary Figure S14 | SEM image of E. coli on the nanostructured Si3N4 surface. The 
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nanostructures (circled in red) do not disrupt the shape of the cells (circled in white) and 

therefore do not induce physical lysis as seen in high aspect-ratio structures. Here, antifouling is 

achieved through anti-adhesion. Scale 1 µm. 
 

 

Supplementary Figure S15 | HeLa cell mortality ratio. Statistically similar mortality ratios 

(measured as the ratio of the number of dead cells to living cells) displayed by the control, flat 

Si3N4, and nanostructured Si3N4 surfaces after 72 hours (P > 0.05, ns: not significant, two-way 

ANOVA with Bonferroni’s multiple comparisons test, s.d., n = 8 representative images). 

Adjustments were made for multiple comparisons. The experiment was replicated two 

times. Error bars are given by the standard deviation about the mean.  
 

 

 

 
 

Supplementary Figure S16 | Biophysical interaction of nanostructured Si3N4 template with 

HeLa cells. a, HeLa live cell density was computed over 72 hours at 24-hour intervals using 10 

representative fields-of-view captured through wide-field epifluorescence microscopy. A sharp 
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reduction in adherent live cell density was observed upon structuring Si3N4 with nanostructures (n = 

10 representative images). b, HeLa cell viability was quantified as the ratio between the number of 

dead to living cells per field-of-view using 10 representative fields-of-view captured through wide-

field epifluorescence microscopy (n = 10 representative images). Higher rates of physically induced 

lyses were observed with increased nanostructured Si3N4 aspect-ratios. The aspect-ratio of 0.45 

chosen to implement the nanostructured Si3N4-membrane for the IOP-sensing implant is 

highlighted in red. The experiment was conducted once. Error bars are given by the standard 

deviation about the mean. 
 

 

 
 

Supplementary Figure | S17. Importance of nanoscale surface topology in anti-biofouling of the 

nanostructured Si3N4 surface. a, Contact angle vs. time elapsed after plasma treatment: flat Si3N4 

surfaces were plasma-oxidised in order to lower their contact angles to values comparable to the 

nanostructured Si3N4 surface (n = 2 measurements). Plasma oxidation produced non-permanent 

enhanced hydrophilicity that dissipates in 24 hours. b, Bovine serum albumin (BSA) adhesion 

measured as a function of fluorescence intensity on untreated flat, plasma treated flat Si3N4 and 

nanostructured Si3N4 surfaces: in case of protein anti-adhesion, hydrophilicity plays a greater role 

than the nanotopology of the nanostructures (n = 12 representative images). c, E. coli adhesion 

measured as a function of fluorescence intensity after 4 hours of incubation (n = 3 representative 

images). d, HeLa cell density measured after 12 hours and 24 hours (n = 5 representative images). For 

cells, nanotopology plays a greater role as indicated by greater adhesion resistance offered by the 

nanostructured Si3N4 surface over the plasma treated Si3N4 surface of a similar contact angle. The 

experiment was conducted once. Error bars are given by the standard deviation about the 
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mean. 
 

 

Supplementary Figure S18 | Fabrication process flow of the nanostructured IOP sensor. 

The top and bottom substrates are separately fabricated and later assembled together. 
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Supplementary Figure S19 | IOP calculation from the sensor-reflected spectrum. a, micro-

optical IOP sensor implant schematic. The hermetically-sealed Fabry-Perot (FP) IOP sensor has 

two important surfaces: (1) a flexible deformable Si3N4-membrane serving as an optomechanical 

sensing element and forming the top surface of the FP-resonator; and (2) a reflective Si mirror-like 

surface that forms the bottom surface. The two surfaces are separated by a gap thereby forming an 
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FP cavity. If IOP increases, the Si3N4-membrane deflects inwards, decreasing the cavity gap size. b, 

The decrease in cavity gap size results in a blue-shift of the FP-cavity resonance spectrum which 

would be detected through reflection spectroscopy. c, A measured raw spectrum (top) and how its 

peaks map into the pre-characterization lines (bottom) generated in benchtop studies performed on 

the sensor before implantation. Each pre-characterization line represents the position of the 

associated peak as a function of pressure. The lines were generated by placing the sensor inside a 

pressure-controlled chamber connected with a reference digital pressure gauge and a pressure 

controller, and during a pressure ramp at a step size of 0.2 mmHg, the peak locations of each raw 

spectrum at a given pressure (provided by the digital pressure gauge) is recorded along with the 

pressure level. The relation between the given pressure and the associated set of the peak locations 

is one-to-one mapping. During in vivo studies, an IOP-identification algorithm maps the location of 

the major peaks in the raw spectrum reflected from the sensor to the best matching IOP-level using 

the pre-characterization lines. d, Custom-built hand-held detector interfaced with a CCD camera 

and a mini-spectrometer for live in vivo IOP detection in awake New Zealand white rabbits.  

 

Supplementary Figure S20 | Angle-dependent properties of the FP cavity and improvement 

using nanostructured Si3N4. a, A flat-surfaced FP cavity under normal incidence provides a 

correct, high signal-to-noise ratio (SNR) reflection spectrum. b, In comparison, a nanostructured FP 

cavity produces a reflection spectrum of marginally reduced SNR due to optimally controlled 
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forward scattering. c, Under oblique incident angles, the interaction of light within the flat-surfaced 

FP cavity is purely specular and no reflected signal is acquired beyond the fixed numerical aperture 

(NA) of the detector objective. d, The reflection spectrum from the nanostructured FP cavity can 

still be detected at oblique incident angles owing to the forward scattering effect of the 

nanostructured membrane, thereby greatly expanding the sensor’s range of the detection angles.   
 

 

 

 
 

 

 

 


